首页> 外文OA文献 >Magnetic Field Amplification by Small-Scale Dynamo Action: Dependence on Turbulence Models and Reynolds and Prandtl Numbers
【2h】

Magnetic Field Amplification by Small-Scale Dynamo Action: Dependence on Turbulence Models and Reynolds and Prandtl Numbers

机译:小规模发电机磁场放大:依赖于   湍流模型和雷诺数和普朗特数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The small-scale dynamo is a process by which turbulent kinetic energy isconverted into magnetic energy, and thus is expected to depend crucially on thenature of turbulence. In this work, we present a model for the small-scaledynamo that takes into account the slope of the turbulent velocity spectrumv(l) ~ l^theta, where l and v(l) are the size of a turbulent fluctuation andthe typical velocity on that scale. The time evolution of the fluctuationcomponent of the magnetic field, i.e., the small-scale field, is described bythe Kazantsev equation. We solve this linear differential equation for itseigenvalues with the quantum-mechanical WKB-approximation. The validity of thismethod is estimated as a function of the magnetic Prandtl number Pm. Wecalculate the minimal magnetic Reynolds number for dynamo action, Rm_crit,using our model of the turbulent velocity correlation function. For Kolmogorovturbulence (theta=1/3), we find that the critical magnetic Reynolds number isapproximately 110 and for Burgers turbulence (theta=1/2) approximately 2700.Furthermore, we derive that the growth rate of the small-scale magnetic fieldfor a general type of turbulence is Gamma ~ Re^((1-theta)/(1+theta)) in thelimit of infinite magnetic Prandtl numbers. For decreasing magnetic Prandtlnumber (down to Pm approximately larger than 10), the growth rate of thesmall-scale dynamo decreases. The details of this drop depend on theWKB-approximation, which becomes invalid for a magnetic Prandtl number of aboutunity.
机译:小规模发电机是将湍动能转化为磁能的过程,因此,预计该过程将主要取决于湍流的性质。在这项工作中,我们提出了一个小规模发电机模型,该模型考虑了湍流速度谱的斜率v(l)〜l ^ theta,其中l和v(l)是湍流波动的大小,并且典型的速度是这样的规模。磁场的波动分量(即小尺度场)的时间演化由Kazantsev方程描述。我们用量子力学的WKB逼近来求解其线性微分方程的特征值。该方法的有效性被估计为磁性普朗特数Pm的函数。我们使用湍流速度相关函数模型来计算发电机作用的最小雷诺数Rm_crit。对于Kolmogorov湍流(theta = 1/3),我们发现临界磁雷诺数约为110,对于Burgers湍流(theta = 1/2)约为2700.此外,我们得出了小磁场对于在无限的磁性普朗特数极限中,湍流的一般类型是Gamma〜Re ^((1-theta)/(1 + theta))。为了减小磁普兰特数(减小到大约大于10的Pm),小发电机的生长速率会降低。该下降的细节取决于WKB逼近,这对于约普朗特的磁性普朗特数无效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号